推广王
- 最后登录
- 2023-8-17
- 注册时间
- 2019-2-15
|
楼主
ningxueqin 发表于 2022-5-6 12:17:38
报表软件数据治理能解决目前商业银行存在的数据真实性、准确性、连续性、完整性和及时性等各类数据质量问题,为内部审计开展数据挖掘、风险防控等深度应用提供高质量的数据保障。但全行级数据治理涉及范围广、流程长,是一项持续而反复的工作,目前仍有许多“痛点”问题亟需解决,已成为商业银行内部的管理难题。亿信华辰内部审计从全行视角发现数据治理存在的问题,积极探索相关的解决途径,切实推进商业银行数据治理工作。
组织高度重视,完善数据治理体系。目前商业银行普遍意识到数据是重要的战略资源,但对数据治理的重要性认识还不够到位。对数据质量提升目标停留在仅满足监管报表要求的阶段,顶层设计不足,缺乏统筹规划,配套制度不足,制约了商业银行管理和应用数据的能力。一是完善数据治理体系建设,加强数据治理统筹规划。良好的数据治理是大数据时代的领先竞争优势,但也是一项关乎全局的系统性工程,需要组织对其保持高度的重视,通过顶层设计建立自上而下、协调一致的数据治理体系,建立健全组织架构,合理配置数据治理资源。二是开展全行数据治理相关制度的梳理和完善,推动数据标准的制定与应用,有效减少系统开发未按照统一的数据标准执行造成的数据多头管理、数据冲突和数据冗余等问题。
构建工作机制,规范数据管理。商业银行内部各部门之间职责割裂,底层数据未能打通,数据标准未建立或执行不到位,导致系统间协同合作和资源共享存在难度。一是建立数据分级管理机制,梳理全行数据资产目录,制定数据分级标准,针对不同数据采取差异化管理。二是从源头上加强数据治理,强调业务与技术相结合,建立统一的业务规范和技术标准,在数据采集录入的薄弱环节设定系统刚性控制,要求根据业务逻辑规则全面准确地录入数据,确保数据的完整性、规范性、一致性等。三是强化数据管控机制,包括数据共享机制、机构间的协同工作机制、数据的上下游调用机制等,促进各业务条线或部门的互联互通。四是构建后评估机制,持续跟进数据治理问题整改,杜绝屡查屡犯。
推进配套体系建设,提升数据质量。商业银行内部条线和部门之间存在明确的权利和责任边界,既得利益者不愿打破边界,导致部门之间配合度较低。数据治理工作方面投入的资源还有一定缺口,落地实施存在困难,管理主体责任没有落地到具体部门的具体人员,且对数据质量的问责处罚未落实到人。一是加大数据治理资源投入,数据治理需要信息技术支撑和基础设施保障,信息系统应具有完备的数据字典和维护流程,应能自动提示异常变动及错误情况,也能实现监管数据加工的自动化。二是完善“1+N”数据治理队伍建设,设立总牵头部门,并在各部门配备专兼职人员,承担数据治理相关工作,为全行数字化转型夯实人力资源基础。三是加强数据能力建设,制定能力提升培训方案,着力提升数据采集、整合、融合、应用、服务等能力,培育既懂银行业务又懂数据运用的复合人才。四是加强数据质量考核引导,通过奖惩机制对数据治理工作进行有效的激励,参照考核收益分配规则确定客户数据的责任部门,由业务部门牵头对相关报表数据进行总体把控。
加大科技应用,助力数据价值实现。部分商业银行目前使用系统存在分时、分阶段、分业务需求建立的特点,后期虽根据业务发展形势进行“打补丁”式优化,但由于底层设计不符合当前大数据应用趋势,很大程度上限制了数据价值的有效发挥。一是实现系统整合,商业银行要想从数据中获取价值,必须整合原有分散的各类系统,构建一套对接全行各部门的一体化、模块化的数据平台,实现统一的数据视图,既满足各类业务需求,又便于收集各类数据。二是预留接口负责采集全行外部数据,有效整合内外部资源,实现数据关联关系的深度挖掘。三是提升数据标准化,构建分层级的指标管理体系,实现全行指标的统一管理,使全行数据具备标准化的数据格式。四是嵌入开发数据质量监控平台,通过部署各类数据质量校验规则对全行数据开展自动化监控,准确定位数据质量问题及其成因。五是利用内外部数据联合建模,采用知识图谱、聚类分析等技术在平台上开发风控模型、定价模型、风险预警模型等,运用数据开展风险管理、业务流程优化和针对性营销,推动数据资产释放其潜在价值。
|
|